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1 INTRODUCTION

SUMMARY

We propose a procedure for uncertainty quantification in Probabilistic Tsunami Hazard Anal-
ysis (PTHA), with a special emphasis on the uncertainty related to statistical modelling of the
earthquake source in Seismic PTHA (SPTHA), and on the separate treatment of subduction
and crustal earthquakes (treated as background seismicity). An event tree approach and en-
semble modelling are used in spite of more classical approaches, such as the hazard integral
and the logic tree. This procedure consists of four steps: (1) exploration of aleatory uncertainty
through an event tree, with alternative implementations for exploring epistemic uncertainty;
(2) numerical computation of tsunami generation and propagation up to a given offshore iso-
bath; (3) (optional) site-specific quantification of inundation; (4) simultaneous quantification
of aleatory and epistemic uncertainty through ensemble modelling. The proposed procedure
is general and independent of the kind of tsunami source considered; however, we implement
step 1, the event tree, specifically for SPTHA, focusing on seismic source uncertainty. To
exemplify the procedure, we develop a case study considering seismic sources in the Ionian
Sea (central-eastern Mediterranean Sea), using the coasts of Southern Italy as a target zone.
The results show that an efficient and complete quantification of all the uncertainties is feasible
even when treating a large number of potential sources and a large set of alternative model
formulations. We also find that (i) treating separately subduction and background (crustal)
earthquakes allows for optimal use of available information and for avoiding significant bi-
ases; (ii) both subduction interface and crustal faults contribute to the SPTHA, with different
proportions that depend on source-target position and tsunami intensity; (iii) the proposed
framework allows sensitivity and deaggregation analyses, demonstrating the applicability of
the method for operational assessments.

Key words: Probabilistic forecasting; Tsunamis; Earthquake interaction, forecasting, and
prediction; Europe.

ever, we emphasize only the implementation for tsunamis of tec-
tonic origin. We refer to this component of PTHA as Seismic PTHA

Computationally based Probabilistic Tsunami Hazard Analysis
(PTHA) is performed by explicit numerical modelling of tsunamis
generated by potential sources. This approach is often preferred
to the empirical PTHA (Geist & Parsons 2006), built upon obser-
vations of past tsunamis, due to the scarcity of tsunami observa-
tions (Geist & Lynett 2014), which however need to be consid-
ered at least for ex post statistical testing, or as a complementary
tool, for example, in a Bayesian framework (e.g. Parsons & Geist
2009).

In this work, we propose a methodology that is applicable for
computationally based PTHA for any type of tsunami source. How-

(SPTHA; Lorito et al. 2015).

In the computationally based SPTHA methods, there are several
open issues. We here try and approach two of the most relevant.
First, all the potential seismic sources should be modelled, includ-
ing the full aleatory variability of source parameters, which has an
intrinsically high computational cost that needs to be limited with
ad hoc simplifications (see discussion in Lorito et al. 2015). Second,
detailed information on all potential faults, including their geome-
try and earthquake occurrence rates, are highly inhomogeneous in
space (Basili et al. 2013), calling for an adaptive approach to fault
modelling.
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Considering only large earthquake sources in subduction zones
is assumed in several cases a viable option (e.g. Annaka et al. 2007;
Gonzalez et al. 2009). However, discarding crustal seismicity could
result in underestimating the hazard, at least in complicated source
regions such as the Caribbean (Parsons & Geist 2009; Omira et al.
2015), eastern Indonesia, the Philippines and New Guinea (Lovholt
et al. 2012b; Horspool et al. 2014), the North East Atlantic, the
Mediterranean and its connected seas (Baptista & Miranda 2009;
Ozel et al. 2011; Mitsoudis et al. 2012). Conversely, constraining
recurrence and geometry of all the possible crustal faults repre-
sents a challenge, in particular in terms of spatial completeness
(Basili ef al. 2013), or associated computational burden (Geist &
Lynett 2014; Lorito et al. 2015). In some applications (e.g. Serensen
et al. 2012), the completeness of seismic sources is dealt with the
definition of seismic zones that identify seismogenic volumes in
which seismicity is possible everywhere, at least to a possible given
maximum, similarly to some Probabilistic Seismic Hazard Analysis
(PSHA) approaches (e.g. Stucchi et al. 2011; Stirling et al. 2012;
Giardini ef al. 2013; Hiemer et al. 2014). However, this approach
neglects most of the available information on the geometrical and
rheological properties of the subduction zones and of the major
faults, which influence at the first order the features of the tsunami,
at least in the near-field (Geist 2009).

The quantification of epistemic uncertainty is typically addressed
by means of logic trees (Geist & Lynett 2014), where a set of Mu-
tually Exclusive and Collectively Exhaustive (MECE) alternative
models are enumerated, and a subjective probability of being the
best model is assigned to each of them (Scherbaum & Kuehn 2011).
The development of such alternatives is very challenging from a the-
oretical and practical point of view (Bommer & Scherbaum 2008).
Also, even if many practitioners interpret the outcome of logic
trees through distributions and percentiles (Abrahamson & Bom-
mer 2005; Field ef al. 2014), other practitioners claim that only the
mean hazard is the true hazard, and distributions of outcomes do
not have any probabilistic meaning (Musson 2005, 2012). More-
over, exploring all the alternatives in a logic tree may become very
challenging from a computational point of view (e.g. Field et al.
2005). This is particularly true for computationally based SPTHA.
As a consequence, effective quantifications of epistemic uncertainty
in SPTHA through logic trees are quite rare. For example, they
have been totally neglected in the multi-hazard GAR15 assessment
(UNISDR 2015), which nevertheless goes all the way to the risk
assessment.

An alternative approach to the quantification of epistemic uncer-
tainty is based on Bayesian methods (e.g. Parsons & Geist 2009;
Grezio et al. 2010, 2012; Knighton & Bastidas 2015), which jointly
assess aleatory and epistemic uncertainties. In particular, prior dis-
tributions take into account epistemic uncertainty, either by impos-
ing a subjective level of confidence on a given assessment (Parsons
& Geist 2009; Grezio et al. 2010, 2012), or through the analysis of
epistemic uncertainty on model parameters (Knighton & Bastidas
2015). Then, prior distributions are combined with available and
independent past data, to evaluate the final posterior distributions.
Noteworthy, in the context of PSHA, Selva & Sandri (2013) rec-
onciles logic tree and Bayesian approaches, by adopting logic tree
outcomes to estimate prior distributions, to be then combined to
past data.

Here, we propose a method for the quantification of both aleatory
and epistemic uncertainties in SPTHA that is based on two pillars.
The first pillar is the Event Tree (ET). In Lorito ef al. (2015), we
already proposed an ET for the treatment of aleatory uncertainty
on a given subduction zone, to which we will refer here as ‘Inter-
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face Seismicity’ (IS). Here, we extend this ET in order to include
the treatment of the crustal seismicity or, more generally, of the
seismicity which does not occur on a subduction interface, here
termed ‘Background Seismicity’ (BS). In a sense, we combine the
two above-mentioned approaches to aleatory uncertainty in a more
general scheme providing a specific treatment for each of the two
kinds of seismicity. The main differences between IS and BS are
that the expected maximum magnitudes for IS are typically much
larger than that for BS; they usually follow different scaling laws;
the amount and the quality of the geometrical information about IS
are substantially different from the information on BS, which is ex-
pected to have a more sparse behaviour in terms of source geometry,
and the knowledge about complex fault networks may be (perhaps
intrinsically) incomplete. Such differences call for a different treat-
ment of IS and BS. Note that the proposed (S)PTHA computational
framework significantly deviates from the one proposed by Geist &
Lynett (2014). The parameterization and the probability quantifica-
tion of sources are here considered jointly, since these processes are
strongly correlated, and a discrete ET is used in place of the hazard
integral. Additionally, the tsunami propagation up to some depth
offshore is explicitly separated by the inundation phase. This en-
ables the computational reduction that allows scaling down regional
to site-specific SPTHA (Lorito et al. 2015).

The second pillar of the proposed methodology is an ensemble
modelling approach to the treatment of the epistemic uncertainty
(Marzocchi et al. 2015). Ensemble modelling treats the alternative
models as an unbiased sample, though not necessarily MECE, from
a parent distribution describing the epistemic uncertainty. It is based
on a clear taxonomy of uncertainty in hazard assessments (Marzoc-
chi & Jordan 2014), and it solves some drawbacks of logic trees,
like the interpretation of the statistics of outcomes and most of com-
putational issues. It also provides a coherent theoretical framework
compatible with Bayesian approaches, in which past data can be
either used to update prior distributions (Selva & Sandri 2013) or to
objectively estimate weights of alternative models (Marzocchi et al.
2012). Here, we demonstrate that it enables us a full exploration of
epistemic uncertainty in SPTHA.

In the next sections, we first introduce a general framework for
SPTHA (Section 2), presenting the new method for treating aleatory
variability (Section 2.1) and the treatment of epistemic uncertainty
through ensemble modelling (Section 2.2). We then apply the pro-
posed SPTHA framework to a case study for the Ionian Sea, Central
Mediterranean (Section 3). In this application, we perform several
sensitivity tests, also explicitly comparing the proposed method with
the two end members of SPTHA described above (either consider-
ing subduction zones only, or using a seismicity homogenously
distributed in volumes). Finally, we analyse the resulting Hazard
Curves (HCs), simultaneously quantifying both aleatory and epis-
temic uncertainties through ensemble modelling. Our application
has a purely explanatory goal and several over-simplifications have
been made. Although the presented results cannot be regarded to
as an actual hazard assessment and cannot yet be considered as an
effective input for decision-making, our case study provides a guid-
ance towards reconciling the throughout treatment of uncertainties
with the practical feasibility of computationally based SPTHA.

2 THEORETICAL FRAMEWORK FOR
SPTHA

The proposed SPTHA method is schematically summarized in
Fig. 1. The assessment is based on four STEPS. We point out
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STEP 1: Seismic sources (probability and modelling)
Goal: enable the full exploration of aleatory variability
Method: Event Tree + alternative modelling

\

STEP 2: Tsunami modelling: generation and linear propagation
Goal: enable large number of simulations
Method: Gaussian-shaped unit sources of sea level elevation

~

STEP 3a: Regional SPTHA

Goal: produce regional-wide coherent SPTHA
Method: amplification

STEP 3b: Site specific SPTHA

Goal: reduce computational cost to enable inundation
modelling

Method: cluster analysis + inundation modelling

Off-shore Hazard Curves
(e.g., isobath of 50 m)

Inundation Hazard Curves

Run-up Hazard Curves |

/

(e.g., flowdepth, flux, etc.)

STEP 4: Uncertainty treatment framework

Goal: quantification of aleatory & epistemic uncertainty,
through alternative implentation of STEPS 1 to 3

Method: ensemble modelling

l

SPTHA results
Hazard Curves + Uncertainty

Figure 1. Flow diagram illustrating the computational scheme adopted for SPTHA. More details for each STEP have been described in the main text.

that these four steps are in principle applicable as well to PTHA for
tsunamis due to any type of source, not only seismic.

STEP 1 regards the development of the source model. The goal
is defining a hierarchical discretization of the source parameters
space within an ET (Newhall & Hoblitt 2002; Lorito ef al. 2015), to
enable a full exploration of the aleatory variability. Source param-
eters are hierarchically ordered, so that each parameter realization
may depend on the higher levels in the ET, but not on the lower
levels. At each level, the expected natural variability is described
through a discrete number of possible values and associated to a
discrete Probability Density Function (dPDF), conditioned to the
realizations at previous levels. The discretization is assumed fine
enough and not affecting the final results (Baker & Cornell 2008).
Ideally, a finer discretization would be required for portions of the
parameter space to which the hazard is more sensitive (Lorito et al.
2015). This is a potential advantage over more classical approaches
based on the solution of the hazards integral (e.g. Geist & Par-
sons 2006). The result of STEP 1 is the definition of a complete
set of source scenarios oy, and their annual rates A(oy), through an
ET which allows the exploration of the aleatory uncertainty. The
epistemic uncertainty in STEP 1 is explored by defining alternative
approaches for estimating the probability at each ET level, or even
alternative ET formulations, resulting in a number of alternative
assessments of A(oy).

STEP 2 regards the propagation of tsunamis generated by each
individual source identified in STEP 1. Since the number of such
individual sources may be very large (on the order of 6 x 10° for the

Ionian sea, see Section 3.1.2), a set of pre-calculated tsunami sce-
narios, resulting from Gaussian-shaped initial sea level elevation
centred at dense and equally spaced points all over the consid-
ered source regions, is stored in a database of tsunami waveforms.
These scenarios are linearly combined for approximating the off-
shore tsunami impact, at a given isobath, due to any source consid-
ered in STEP1. The result of STEP 2 consists of the collection of
the maximum wave height A,,,, at discrete points, in our applica-
tion along the 50 m isobath, for each individual scenario defined at
STEP 1. As for STEP 1, also in STEP 2 alternative implementations
are possible, resulting in a number of alternative assessments of the
hmax due to each individual source.

STEP 3 deals with tsunami amplification during the shoaling
phase and inland impact assessment. Approaches in which high-
resolution metric-scale inundation is simulated for each and every
source scenario defined at STEP 1 are clearly unaffordable. Since
two options are possible, we split this part in STEPS 3a and 3b. In
either case, as for STEPs 1 and 2, alternative modelling approaches
are possible, leading to a number of alternative assessments of the
tsunami hazard intensity inland.

STEP 3a. For regional-scale hazard analysis, a crude approx-
imation of maximum run-up can be obtained via amplification
factors, depending on the features of the incident waves, of the
coastal slope and on bottom friction. Examples are the Green’s law
(Synolakis 1987, 1991) and its modifications (see e.g. discussion
in Geist 1999), and the technique used for the tsunami compo-
nent of UNISDR (2015), based on Levholt ez al. (2012a). For long
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non-breaking waves, these amplification factors may be used to
project the offshore /iy, up to the shoreline (Carrier & Greenspan
1958; Synolakis 1987; 1991; Levholt et al. 2013), and this val-
ues can be considered either just an assessment at the shoreline or a
proxy for the maximum run-up on the coast behind. Where relevant,
for example, for coastal plains, shoreline /,,,x values can be input to
empirical relationships considering also bottom frictional damping
for obtaining inundation distance and consequently run-up.

STEP 3b. For site specific hazard, explicit inundation modelling
is mandatory, in order to get the spatial distribution of the desired
hazard intensity, such as maximum flow depth, momentum flux, or
composite impact metrics obtained by combination of the funda-
mental variables (e.g. chap. 7 in TPSWG 2006). STEP 2 offshore
results may provide the input for an ex post filtering procedure,
which allows to subsequently perform high-resolution inundation
modelling for a limited subset of scenarios (Lorito et al. 2015).
This technique makes the computational problem more affordable,
while introducing a manageable additional source of uncertainty
in the probabilistic maps. Other techniques aiming at reducing the
computational burden associated to probabilistic inundation maps
have been proposed as well (e.g. Thio et al. 2010; Thio & Li 2015;
Wei et al. 2015). The result of STEP 3 consists of the collection of
the inland tsunami hazard intensities for each individual scenario
defined at STEP 1.

STEP 4. The combination of STEPS 1 and 2 provides the assess-
ment of offshore HCs. STEP 3a (for maximum run-up) or 3b (for
other metrics) assess inland HCs. In either case, the annual rate of
exceedance of a threshold ¢ for the hazard intensity W at a location
X, can be defined in terms of the annual rates A(o;) of the seismic
sources o, and the modelling of the tsunami propagation from the
seismic source to x, that is in a general formulation:

AW =, x) =) A0 Pr(W = Yoy, ). (1)

Assuming all terms in eq. (1) are stationary over the exposure
time AT and assuming a Poisson process, the HCs for the SPTHA
at the target location x for the selected AT can be assessed as

Pr(V >y, x,AT)=1—exp (-2 (¥ > ¥, x)- AT). )

The two factors in eq. (1) are related, respectively, to the source
(A(oy)), and to the propagation from the source to the target loca-
tion x (Pr(¥ > v |o, x)). Evaluating eq. (2) for several values of
the threshold v allows constructing the HCs at any location x. As
discussed above, STEPS 1 to 3 can be repeated for each possible al-
ternative implementation, regarding both source (e.g. different ways
of assessing seismicity rates in STEP 1) and tsunami modelling (e.g.
using different numerical codes in STEPS 2 and 3). Since the to-
tal set of scenarios o, to be modelled is set in STEP 1 within the
ET(s), all the alternatives can be implemented by re-weighting the
propagation results of STEPS 2 and 3, largely reducing the overall
computational effort. STEP 4 is then devoted to rank all these al-
ternatives and integrate them into a single model in the framework
of ensemble modelling (Marzocchi ef al. 2015), where aleatory and
epistemic uncertainties are consistently and simultaneously quanti-
fied. At this STEP, potential correlations among alternative models
are treated, and the final results are prepared in terms of distributions
that comprehensively represent all the uncertainties to be commu-
nicated to end-users. The ranks of models are expressed through
weights assigned to each alternative formulation, ideally quantified
for long-term analyses through experts’ elicitation experiments (e.g.
SSHAC 1997; Saaty 2008).

Quantification of source uncertainties in SPTHA 1783

The development of the ET in STEP 1 is discussed in details in
Section 2.1. The development of the ensemble model for uncertainty
assessment of STEP 4 is discussed in Section 2.2. The framework
for the linear offshore tsunami propagation will be discussed in
details in Molinari et al. (in preparation), particularly as it regards
the uncertainty introduced by such an approach on the hazard in-
tensity estimates. The basics of this framework are however briefly
summarized in Section 3.1.2 for the application to the lonian Sea.
Uncertainty in numerical modelling of tsunami propagation will
be instead here neglected. STEPS 3a and 3b have been discussed
in details in Lorito et al. (2015). Here, in the application, we im-
plement STEP 3a only adopting the Green’s law for estimation of
HCs at the shoreline (1 m isobath), which can be considered a very
rough proxy for run-up, whereas inundation calculations are not
performed.

2.1 STEP 1: development of the ET

The ET is focused on the source term A(oy) in eq. (1), allowing
a robust description of source variability (definition of the set of
scenarios) and statistics (assessment of the mean annual frequency
of each scenario). The ET for subduction zones proposed by Lorito
et al. (2015) is here extended by considering both subduction Inter-
face Seismicity (hereinafter, IS) and crustal Background Seismicity
(hereinafter, BS).

The whole source area is divided into a number of statistically
independent seismic regions R; (regionalization), which may or
may not contain a source of IS. In each region, an independent ET
(Fig. 2) is developed. The first two LEVELS of the ET (Fig. 2a)
are:

1. Magnitude M or corresponding seismic moment 71
2. Seismicity class C (here, indicating either IS or BS);

At LEVEL 1, the annual rates A; (M) are computed in each region
R; for a finite set of different magnitude levels M, each of them
representing an actual interval of M. Different alternative proce-
dures can be adopted for the assessment of A;(M). They are mainly
based on fitting the total productivity and the frequency-size rela-
tionship (the a- and b-values of a GR distribution). Many different
assumptions can be made, ranging from the choice of a distribution
(e.g. truncated or tapered Pareto) to the setting of different proce-
dures to quantify its parameters (e.g. maximum magnitude My,y),
which may come from seismic catalogues and/or geometrical con-
straints. Since A; (M) is assessed jointly for all magnitude levels, it
is theoretically possible to consider the statistical dependency of the
distribution parameters (Bommer & Scherbaum 2008; Keller ef al.
2014). In addition, given the potential impact on SPTHA of the
tails of the magnitude-frequency distributions, an important effort
should be put for an operational assessment to constrain the rates
of large events (e.g. Geist & Parsons 2014; Rong et al. 2014); deal-
ing with this topic is however beyond the scope of this study. The
choice of starting the ET in each region from setting the frequency-
size relationship is of paramount importance. Indeed, this enables
an overall control of the energetic balance of each region, indepen-
dently by all the other LEVELS and, in particular, by the separation
in different seismicity classes.

At LEVEL 2, we separate the different classes of seismic-
ity C;. In our case, the two seismicity classes C; are BS and
IS. More classes could be added, if data support further distinc-
tions and significant improvements are foreseen for tsunami mod-
elling. The set of the seismicity classes represents a partition of the
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Figure 2. Event Tree (ET) adopted for SPTHA. The part of the ET in common to all seismicity classes Cy is reported in panel (a). In this paper, Ci considers
two classes: BS and IS. In panels (b) and (c), the BS-branch and the IS-branch are reported separately. To increase the readability, a generic number n of
discrete values for the dPDF at each LEVEL is reported, even if it is not necessarily equal at all LEVELS. Also, at many branches the label ‘clone’ highlights

that a subtree equal to the ones at the same LEVEL should be reported.

whole seismicity, so that ) " « Pr(Cy|R;, M;) = 1. This means that we
define the probability that a given random earthquake in the region
R; of a given magnitude M; is either in IS or BS, with probabil-
ity Pr(Cy = IS|R;, M;) and Pr(C; = BS|R;, M;) respectively. This
LEVEL is not trivial only for the regions including IS. If the re-
gion does not include any subduction interface, the dPDF is simply
Pr(Cy =1IS|R;, M;) = 0 and Pr(C; = BS|R;, M;) =1, forall M.
Otherwise, Pr(Cy = IS|R;, M) is expected to be a function of M,
with values likely closer to 1 for high magnitude events (e.g. M;
> §), and close to a background level for relatively small magni-
tudes (e.g. M; < 5). Even though this probability may be difficult
to constrain, LEVEL 2 is fundamental for a separate treatment of
IS and BS at the following LEVELS and thus for a more focused
use of the available information. On one hand, its inclusion is itself
a source of epistemic uncertainty. On the other hand, we argue that
we may introduce a much larger source of epistemic uncertainty
by neglecting it. These speculations are quantitatively tested in the
application, in Section 3.

The overall goal of this first part of the ET is assessing the annual
rates for all magnitudes M; and all classes of seismicity Cj in

each independent region. Indeed, through LEVELS 1 and 2, the
overall rate of earthquakes can be written through the two separate
contributions of IS and BS:

3 (M) = 3 (M) - [Pr (Ci = 1SIR:, M)
+ Pr(Cy = BS|R;, M;)]
=17 (M;) + 05 (M) . 3)

After LEVEL 2, specific ET branches can be developed separately
for each seismicity class Cy, aiming at describing all the aleatory
variability of the sources in each class. Noteworthy, this formulation
allows separating the contribution of BS and IS also in the overall
hazard, as formulated in eqs (1) and (2).

The goal of each Cj-branch (subsequent to LEVELS 1 and 2, see
Fig. 2) is to define a MECE set of possible scenarios representing
all potential seismic sources in each region R;, for each seismicity
class Cy and each magnitude M;. The MECE assumption implies
that ), Pr(UI(R"’M"’Ck”R,-, M;, Cy) = 1foralli,jand k, where with
O‘/(Ri'M/ “““) we indicate the /-th seismic source among all the possible
ones in region R;, of class C and with magnitude M;. The overall
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mean annual rate of exceedance of a threshold ¢ for the hazard
intensity at a location x, can then be defined in terms of the separate
contribution of all the possible seismic sources, so that

W = Y x) =) AW = Y, x)

k

= Z { Z |:)\i(~,g (Mj) Pr (UI(R"’M"’C")|R1" M;, Ck>
k

il
WszwMwa%} )

with C, = BS, IS, i and j running over all regions and mag-
nitudes respectively and / ranging over all MECE scenarios
in each Cj-branch. Eq. (4) identifies the three main terms,
corresponding to energy balance expressed through the earth-

quake rate Aic‘ (M), the probability of a specific earthquake sce-
(R; .M .Cy

nario Pr(o, )|R,», M;, C;) and that of hazard metric ex-
ceedance estimated with tsunami numerical propagation Pr(W >
1//|O'1(waj ’Lk), Xx), respectively. Also, eq. (4) represents the develop-

ment of eq. (1) through the presented ET, with the index s corre-
sponding to all combinations of {i, j, & [} (region R;, magnitude
M;, seismicity class C; and earthquake mechanism o;). The de-
tails on the formulations of BS- and IS-branches are reported in the
following sections.

2.1.1 BS-branch

BS includes all the seismic sources that are outside the subduction
interfaces of the active subduction zones forming IS (or, more in
general, the interface of major fault systems). Therefore, it repre-
sents a broad class of sources occurring within the seismogenic
layers. Within the BS-branch, we define the following five LEV-
ELS (Fig. 2b):

1. Centre of the fault (x, y);

2. Depth of the centre of the fault z;

3. Fault geometry/earthquake mechanism, that is, strike, dip and
an average rake (s, d, r);

4. Maximum rupture area 4;

5. Seismic moment distribution on the finite fault Am, defined
in terms of local deviation from the average moment per unit area
(mo/A) and from the average rake r.

Note that the geometrical parameters of BS are treated through a
purely probabilistic method, that is, no strong assumptions are made
regarding for example the fault geometry. For simplicity, hereinafter
we avoid introducing further indexes to indicate the discrete inter-
vals for all above parameters.

At LEVELS BS-1 and BS-2, the position of the fault cen-
tre is established, both for its horizontal pesition (x, y) and its
depth (z). The analysis of potential (x, y) may be performed on
a regular grid identifying a discrete number of cells (e.g. Grezio
et al. 2012). The goal is the assessment of the spatial probability
78S = Pr(x, y|R;, C; = BS), representing a dPDF over all cells in
each region. Even if the probability value at one LEVEL is theoret-
ically conditioned to the realization at all previous LEVELS, here
we omit to report the magnitude M;, since the spatial probability
7 B8 is typically assessed independently from it. This kind of simpli-
fications will be done at all LEVELS. Different methods have been
proposed in literature, mainly based on the analysis of seismic cat-
alogues (uniform, smoothed seismicity, smoothed seismicity plus
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faults, simple sampling from past occurrences, Grezio et al. 2012;
Serensen et al. 2012; Hiemer et al. 2014). Also the assessment of
the depth probability 77 = Pr(z|R;, M;, C; = BS, 4, x,y) can
be based on the analysis of the seismic catalogues. A uniform dis-
tribution is often adopted for offshore earthquakes because it is
difficult to constrain this probability reasonably well and homo-
geneously enough in the considered domain (Grezio et al. 2012;
Serensen et al. 2012).

At LEVEL BS-3, a joint dPDF must be established for the focal
mechanism, that is, strike, dip and average rake (s, d, ), conditioned
to the parameters at the previous LEVELS. For BS, in each specific
position any mechanism is theoretically possible. The joint dPDF
78 =Pr(s,d, r|R;, Cy = BS, x, y) can be constrained by focal
mechanism catalogues. In addition, information on sufficiently well-
known local faults can be used to probabilistically constrain the
strike, dip and rake of the potential earthquakes in that location.

At LEVEL BS-4, the dPDF for the rupture area 4 is established.
This area may be assumed rectangular for BS, characterized by a
length L and a width W. Given that BS includes mainly crustal
faults, the joint dPDF 725 = Pr(4|C; = BS, r) can be constrained
by specific scaling laws for the different tectonic regimes (rake 7,
e.g. Wells & Coppersmith 1994).

At LEVEL BS-5, the heterogeneities on seismic moment
distribution are modelled, assessing the probability 785 =
Pr(A7n|Mj, Cy=BS,x,y,z,5,d,r, A). At previous LEVELS,
only the total seismic moment (LEVEL 1), the average focal mecha-
nism (LEVEL BS-3) and the rupture area (LEVEL BS-4) are treated.
From these values we can define an average moment per area unit
mo; /A and an average slip modulus u = m; /(A4 - ), where w is
the rigidity in each unit area. Large variations of y are not expected
within the rupture area of the crustal faults, so it is reasonable to
consider just one single value for the entire fault area. In any case,
at LEVEL BS-5, it is possible to model the local deviations for such
mean parameters on the finite fault. The heterogeneities in the mo-
ment and the mechanism distribution may be particularly important
if the target site is in the near field, that is, within a distance of one
or two fault lengths. This LEVEL can be simulated with different
stochastic techniques (see e.g. Geist & Oglesby 2014). However, this
aspect is expected to be more important for IS in subduction zones,
characterized by stronger heterogeneities and larger earthquakes.

Once the discretization and the dPDFs are established at all LEV-
ELS, the probability of each possible scenario can be computed
as:

5
Pr <o,(R”Mf‘°k=BS)|R[, M;, Cy = BS) =[]~ (5)
n=1

This equation represents the earthquake mechanisms term in
eq. (4) for C;, = BS.

2.1.2 1S-branch

IS includes all the potential interface earthquakes in active subduc-
tion zones (but potentially it can be extended to any well constrained
fault). Therefore, the IS-branch is developed only in regions where
such interfaces exist. IS represents a rather specific class of sources,
and, generally, has more available information on geometrical pa-
rameters. This allows for a more specialized procedure to treat
aleatory uncertainty. Within the [S-branch, we define only the fol-
lowing LEVELS (Fig. 2¢):

1. maximum rupture area 4 on the interface plane and the po-
tential centres of the fault (x’, y');
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2. seismic moment distribution on the finite fault, defined in
terms of local deviation from the average moment per unit area
(my/ A) and from average rake r.

Note that the number of IS LEVELS is smaller than the BS
LEVELS because of the different level of determinism that is
possible in the analysis of the subduction interfaces. In particu-
lar, (i) the coordinates of the potential centres (x, y, z) are directly
mapped on the known geometry, so a common reference system
(x,y,z) = f(x',y') is defined on the interface; (ii) the definition
of potential fault centres (x', y’) is made jointly with the definition
of potential rupture areas A, since they depend on each other; (iii)
the ruptures follow the geometry of the interface (strike and dip)
and the average convergence direction (rake), so they are set de-
terministically for IS (the ET deals with aleatory uncertainty only).
Eventually, the uncertainty on such parameters may be modelled
as epistemic uncertainty through alternative implementations, as
discussed in Section 2.2.

At LEVEL IS-1, the assessment of potential rupture area 4 for
a given magnitude M; and potential fault centres (x’, y') is made
jointly. Indeed, the possibility that a given point of the interface
(x’, y") is the centre of the rupture depends on the total rupture area
for that given magnitude A (Lorito et al. 2015). Conversely, the
modelled rupture area A4 should be adapted to the complexity of
the interface geometry, which varies locally and depends on the
central point (x’, y). Therefore, a joint procedure is required to
define the potential rupture areas A in each potential fault centre
(x',»') and to assess their joint probability of occurrence 7> =
Pr(x’, y', AIR;, M;, C; = IS). Differently from BS, the IS rupture
is not assumed rectangular especially for large magnitudes, when the
rupture is supposed to eventually spread over all the available space.
Moreover, the scaling laws are often violated by large tsunamigenic
earthquakes, as it was for the M9 Tohoku 2011 earthquake (e.g.
Romano et al. 2014). At the very least, a large variability is expected
around the mean values from the scaling laws for great subduction
earthquakes.

At LEVEL 1S-2, we may consider potential seismic
moment distributions to evaluate the probability 7)° =
Pr(Am|R;, C;, = 1S, x', ', A). The same considerations that we
reported for the LEVEL BS-5 are valid here, and heterogeneous
moment distributions are expected to play a significant role for
large subduction earthquakes. Additionally, the rigidity in the shal-
low regions of subduction zones may vary even up to a factor of
5, and then earthquakes with similar seismic moment may result
in substantially different slip amount and tsunami excitation (e.g.
Bilek & Lay 1999; Geist & Bilek 2001; Polet & Kanamori 2009).
These systematic variations can be modelled in this framework, and
we plan to address them in future studies.

Once discretization and dPDFs are established at all LEVELS,
the probability of each possible scenario is assessed as:

Pr <af“"‘”’“:'s)|R,-, M, Cp= Is) =7 7 ©)

This equation represents the earthquake mechanisms term in
eq. (4) for C;, = IS.

2.2 STEP 4: ensemble modelling

Epistemic uncertainty arising from the different alternatives briefly
discussed in the previous sections for the various ET LEVELS
is here treated in the framework of ensemble modelling, as intro-
duced in Marzocchi et al. (2015) for PSHA. Aleatory uncertainty is

quantified by the expected long-run frequencies of random events
within the model of the system. Such frequencies are objective
probabilities 6, and they can be potentially measured through a
well-defined experimental concept. The experimental concept de-
fines collections of data - observed and not observed yet - that
are judged to be exchangeable. The long-run frequencies are deter-
mined by this data-generating process (Marzocchi & Jordan 2014).
Hypotheses about aleatory variability (models for such frequencies)
can be tested against observations by frequentist (error-statistical)
methods. Epistemic uncertainties measure the lack of knowledge
in the estimation of such frequencies. Models assessing 6 are often
based on expert opinions, thus epistemic uncertainty is described by
subjective probabilities. Bayesian methods are appropriate for re-
ducing epistemic uncertainties as new knowledge is gained through
observation. The epistemic uncertainty arising from this framework
describes ‘the center, the body, and the range of technical interpre-
tations that the larger technical community would have if they were
to conduct the study’ (SSHAC 1997, 2012).

To quantify such uncertainty, a finite set of different models
{6;, w;} (i =1, ..., N) can be developed, where 6; and w; are
the outcome and the weight of the i-th model. The N different
models describe one specific variable of interest 6, representing an
estimation of a long-run frequency. In ensemble modelling, each
model is considered as a sample of an unknown parent distribution
f(0) that describes the variable 6 taking into account simultaneously
for the aleatory variability and epistemic uncertainty:

i~ f(0)=1[6]. (N

In order to produce a consistent ensemble model, the sample
{6;, w;} should represent a set of scientifically acceptable models
(SSHAC 1997). Differently from logic trees, such models are not
assumed MECE and can derive from one or more logic trees, or
from a collection of models. The only requirement is that {0;, w;}
represents an unbiased sample of the epistemic uncertainty (see dis-
cussion in Marzocchi et al. 2015). The weight associated to each
model should properly take into account the confidence (based on
expert opinion and/or on quantitative evaluation of the forecasting
performances) and the possible correlation between the models; ex-
amples of the assessments of these weights based on expert opinion
are the SSHAC (1997) process and the Analytic Hierarchy Process
(Saaty 2008).

Different variables of interest & may be defined. In probabilistic
hazard assessments, a typical experimental concept consists of col-
lecting data on the exceedance of a selected hazard intensity level
during N equivalent time intervals in one specific site or region.
In this context, the exchangeability is referred to time intervals,
meaning that they are considered equivalent and their position in
time is exchangeable. In this case, specifically for (S)PTHA, it is
convenient to set 8%) = Pr(y > ¥;x, AT), as in eq. (2); then, the
variable of interest is the hazard curve itself. To derive an appro-
priate set of models {0,.(‘/'), w;}, alternative formulations of all the
terms in eq. (2) must be developed. Focusing on the epistemic uncer-
tainty on the source term, we can consider for example alternative
implementation of the ET discussed in Section 2.1. In practice,
we can consider alternative assessments of the dPDF, alternative
discretization procedures at the LEVELS, and alternative configu-
rations of the subduction interface and the relative parameters. All
these alternatives may be appropriately represented by means of an
Alternative Tree (AT). Note that this is different from a Logic Tree
(e.g. Geist & Parsons 2006; Bommer & Scherbaum 2008), since
no probabilistic interpretation of branches is considered. Of course,
incompatible branches cannot be combined, but this choice does
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not pose practical or theoretical problems, because a model outside
the AT is just another sample for the ensemble with its associated
weight. Since the weights are not probabilities they do not have to
sum to 1.

For a small sample size, the distribution [6()] can be set through
a parametric distribution (e.g. a Beta distribution), replacing such
few probability outcomes with a continuous distribution that de-
scribes the aleatory variability and the epistemic uncertainty. For a
large enough sample size, a non-parametric distribution fitting the
samples may be also adopted (if judged scientifically sound, see
discussion in Marzocchi et al. 2015). In any case, if the number
of alternative models is too large to be computationally feasible,
a subset of alternative models can be sampled from the original
set of alternatives considering the relative weights. This subset may
represent a sample for the ensemble. In all cases, the aleatory uncer-
tainty may be assessed through the central tendency values of [0)]
(e.g. mean or median), while the epistemic uncertainty may be rep-
resented through a confidence interval (e.g. the interval 16th—84th
percentiles). The distributions [#¥)] enable a meaningful test of the
hazard results against real independent observations (Marzocchi &
Jordan 2014; Marzocchi et al. 2015) and a worthy communica-
tion of the degree of epistemic uncertainty to the decision makers
(Paté-Cornell 1996; SSHAC 1997, 2012).

3 APPLICATION: THE CASE STUDY
OF THE IONIAN SEA (CENTRAL
MEDITERRANEAN SEA)

This case study emphasizes the seismic source variability analysis
in SPTHA, through implementation of STEPS 1 and 4 of Fig. 1
for seismic sources. With the aim of demonstrating the proposed
methodology, many choices are here made just for illustrative pur-
poses.

In Section 3.1, we introduce the specific SPTHA settings used
for the case study, going through STEPS 1 to 4. In Section 3.2,
we analyse the sensitivity of the HCs to alternative source models
and to the separation between IS and BS. In Section 3.3, we finally
present the results of the SPTHA case study in terms of an ensemble
model that simultaneously accounts for both aleatory and epistemic
uncertainty.

3.1 Setting the SPTHA for the Ionia Sea

The application area is the lonian Sea, in the central-eastern part of
the Mediterranean Sea, a region tectonically dominated by the inter-
action of the Africa, Eurasia and Aegean plates. The African oceanic
crust is the World’s oldest (280 My) and is subducted beneath the
European Plate in the Calabrian Arc and beneath the Aegean Plate
in the Hellenic Arc (see Fig. 3a). Although the two slabs belong
to the same plate, the Calabrian and Hellenic subduction zones are
different in terms of both geometry and behaviour. The Hellenic
slab dips to the northeast in the lonian Sea and to the north in the
stretch from Crete to Rhodes, at a shallow angle (ca. 20°-30°, e.g.
Gesret et al. 2011), whereas the Calabrian slab dips to the north-
west and is much steeper (ca. 70°—80°, e.g. Chiarabba et al. 2008).
Convergence rates are on the order of 35 mm yr~! in the Hellenic
Arc (e.g. Reilinger et al. 2006) and 1-5 mm yr~! in the Calabrian
Arc (e.g. Devoti et al. 2008). Both subduction zones feature wide
and thick accretionary wedges. Away from the subduction of the
African oceanic crust, the collision of continental crust is active
along the coast of northern Greece and Albania, in Sicily, and in
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the Taranto Gulf. A promontory of continental crust of the African
Plate, often referred to as the Adria Microplate, indents the Euro-
pean Plate towards the Adriatic Sea. Intracontinental deformation
occurs in the Sicily Channel and carries on towards the Gulf of Sirte
(e.g. Corti et al. 2000).

Our SPTHA target area is a segment of the Southern Italian
coasts, from the south-easternmost point of Sicily to the east side
of Apulia region (see Fig. 3b). In particular, 398 points along the
coasts are selected, spaced ~2 km on the average (yellow dots
in Fig. 3b). Detailed analyses are reported on 12 selected coastal
points for selected locations, namely Siracusa, Catania, Taormina,
and Messina in Sicily; Bova Marina, Locri, Soverato, Crotone, and
Sibari in Calabria; Taranto, Leuca, and Brindisi in Apulia (red dots
in Fig. 3b).

3.1.1 STEP I: the event tree for exploring uncertainties on sources

For the sake of conciseness, we report in the main text the most
important steps of the application, while additional technical details
regarding the SPTHA computations are reported in Appendix A in
the Supporting Information.

In Figs 3(a) and (c), the tectonic regionalization for the applica-
tion source area is shown. The regions are defined according to the
tectonic setting. In this figure, we highlight the two subduction inter-
faces in the application area, namely the Calabrian and the Hellenic
arcs. To guarantee homogeneity in the assessments at LEVELS 1
and 2, all regions including parts of the same subduction interface
are merged to obtain macro-regions. The macro-region correspond-
ing to the Calabrian arc is formed by regions 12 and 26; the one
corresponding to the Hellenic arc is formed by regions 7, 29, and
35. More details on the regionalization are reported in Appendix
A.2 (Supporting Information). The assessment at LEVELS 1 and
2 is made using the macro-regions, then at the following LEVELS
for the single regions.

At LEVEL 1, the goal is the assessment of the mean annual
rates of the earthquakes at the different magnitudes levels in each
region/macro-region separately. We define a set of n; magnitudes
M; G =1,2,..., n;) covering the complete range of expected
magnitudes within all the source area. Each magnitude level M;
represents the most probable magnitude (the mode) in an interval
[M;, M;i1].

Several possible methods may be adopted to assess the rates
A(M;): classical or Bayesian joint assessments of the parameters
of the frequency-size distribution (e.g. Keller er al. 2014); sep-
arated assessments of mean annual rates of earthquakes and of
the parameters of a Pareto distribution (e.g. Kagan 2003). For
simplicity, we adopt the latter, assessing A(M;) for each region
through

A(M;) =r(M > M,)- [©(Mi+1;Mtv Myax. B)
_(D(Mj;Mlstaxv ,B) }7 (8)

where M, represents a lower threshold for the magnitudes (e.g.
Kagan 2002a,b), and it is set to 4.5; A(m > M,) is the mean annual
rate for the magnitudes greater than M,; ®(M; M,, M., B) is a
cumulative distribution function for the magnitudes with parameters
M,, M., and B, defined for M > M,.

We adopt three alternative assessments of A(M > M,), two func-
tional forms for & with eight alternative choices for setting the
distribution’s parameters. We assign different integer weights to
each alternative choice indicating their relative credibility. In total,
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Figure 3. (a) Application area for the Ionian Sea case study, highlighting the source area and the target area. (b) Zoom on the selected target area, highlighting
the position of the receivers (small yellow dots) and localities for which hazard curves have been plotted and commented in the main text (red dots). (¢c) Zoom

on the source area, with tectonic regionalization of the Ionian area.

we consider 48 alternative assessments (see details in Appendix
A.3.1 in the Supporting Information).

At LEVEL 2, the goal is the separation of IS and BS. We adopt
the following formulation:

Pe(Co = ISIR. M) = ai (M) + (1~ (M))) - 1 (M~ M)).
)]

_ nis(m>My)
where a;(My) = s (=M Fnps(m=M )’

number of events being IS at a given magnitude level M, and

is the fraction of the total

Jf(M; — M) is amonotonically increasing function with f(0) = 0,
and f(x > 1)=1.

The parameter a;(My) is assessed counting the IS events in
the EMEC seismic catalogue (Griinthal er al. 2010, Griinthal &
Wahlstrom 2012) with magnitude M > M, (see Appendix A.1,
Supporting Information). In particular, the events in the catalogue
are assigned to IS or BS depending on their hypocentre location with
respect to the known interface geometry. Events with hypocentre
inside a vertical buffer around the subduction interface are assigned
to IS, and all the others are assigned to BS. We consider 5 alternative
choices for this buffer: 0, 5 km, 10 km, 15 km and oo. The first and
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the last choices correspond to assume that the whole seismicity is
BS (¢; = 0 and f(x) = 1, for all x) or IS (a; = 1), respectively.
Also, we adopt two alternative choices for both M, (5.0 and 6.0)
and f(x) (linear or exponential between M, and 8) providing 12
alternatives (see Appendix A.3.2, Supporting Information). Each
alternative allows defining eq. (9) for all macro-regions containing
a subduction interface. The earthquake rates of BS are finally di-
vided into each region, according to the fraction of BS events with
M > 5 in the catalogue. For all the regions not containing any sub-
duction interface, LEVEL 2 is trivial, and Pr(Cy = IS|R;, M;) is
set to 0.

At LEVEL BS-1, the probability 725 = Pr(x, y|R;, C; = BS)is
studied over a regular grid with cells of equal area, approximately
25 km x 25 km. The probability 7S is estimated either following a
uniform distribution, or using a model of smoothed seismicity (set
as in Hiemer ef al. 2014). Both estimations are made considering
only the events with M > 4.5 and assigned to BS at LEVEL 2.
This means that, in the macro-areas with a subduction interface,
the two mentioned methods are combined with the four different
buffers adopted at LEVEL 2 (excluding buffer = oo, since no BS
is foreseen in this case), providing 8§ alternatives (see details in
Appendix A.3.3, Supporting Information).

At LEVEL BS-2, the probability 735 = Pr(z|R;, M;, C; =
BS, x, y) is studied over a number of discrete depths depending
on the magnitude level. In particular, a mean seismogenic depth W
is assumed equal to the crust width of 27 km, as derived from the
CRUST 1.0 model (Laske et al. 2013). The number of depth levels
is based on the average width of the crustal faults for the given
magnitude level M;, evaluated from Wells & Coppersmith (1994).
Then, the depth is divided in n; equal intervals from 1 km depth
(top fault) to a depth of W (bottom fault), with probability equal
to 1/n; in each interval. Here a uniform probability distribution is
adopted due to the difficulty of constraining reasonably well and ho-
mogeneously enough this probability for the offshore earthquakes
over the considered domain. More details can be found in Appendix
A.3.4 (Supporting Information).

At LEVEL BS-3, the potential combinations of the strike, dip
and rake angles are considered. The parameter space is transformed
following Selva & Marzocchi (2004), in order to better preserve
distances. This transformation provides the strike S between 0 and
180, the dip D between 0 and 180, and the rake R between —180
and 180 (more details in Appendix A.3.5, Supporting Information).
Each interval is discretized with 4 strike, 9 dip and 4 rake intervals,
for a total of 144 variations for the dPDF. A two-layer Bayesian
model is then adopted to assess 725, assuming a Dirichlet distribu-
tion for the prior and a multinomial distribution for the likelihood.
This functional choice is a rather common assumption for this kind
of assessments (e.g. Gelman et al. 1995). At the first layer, a dPDF
is obtained at the region level. To obtain this distribution, we set a
semi-informative prior based on a priori judgment about the pos-
sible combinations of angles (mainly, dip and rake). This prior is
then updated considering the two alternative catalogues: AIICMT
and EMMA (see Appendix A.1 in the Supporting Information; Pon-
drelli et al. 2011; Ekstrom et al. 2012, and references therein). Both
focal planes presented in the catalogues are considered with weight
%‘ This assigned weight represents the uncertainty on the data (see
discussion in Selva & Sandri 2013). At the second layer, the obtained
posterior dPDF, again a Dirichlet distribution, is adopted as regional
prior for the assessment in each cell (x, y). In case of the presence
of known faults in one cell, the regional prior is combined with this
specific information available for the cell. Alternative probability
distributions are finally sampled from the obtained distribution in
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each cell, accounting for epistemic uncertainty in their definition.
More details can be found in Appendix A.3.5 (Supporting Informa-
tion).

At LEVEL BS-4, we make a simplification by neglecting the
potential aleatory variability on the fault rupture area 4, and adopt-
ing the best estimate of the scaling laws. We also assume the same
scaling laws irrespective of the specific faulting style (strike- or
dip-slip). Therefore, we assume that the area is equal to the mean
value of the scaling law provided by Wells & Coppersmith (1994),
with the best guess aspect ratio.

At LEVEL BS-5, the heterogeneities on the seismic moment
distribution are not implemented, nor are those regarding the rigidity
. This means that a uniform moment release is assumed all over
the rupture area 4 with probability 725 = 1.

At LEVEL IS-1, that is, for subduction earthquakes, the assess-
ment of the rupture area and its centre is made jointly with the
following procedure: (a) a grid (x', y’) is set over the interface; (b)
each point (x’, y’) corresponds univocally to one volumetric posi-
tion (x, y, z), that is, for each point (x,y) is fixed at the local depth z
of the slab interface; (c) for each magnitude M; and centre (x’, y'),
we consider a first guess rectangular area from the scaling laws
(Strasser et al. 2010); of course, other scaling laws for subduction
earthquakes could be considered; (d) several possible geometries are
attempted to fill the seismogenic depth and the one that better ap-
proximates the initial area is selected. In order to accommodate the
area for the given magnitude and the given point (x',)"), we require
that the ratio between the selected triangular elements is greater than
25 per cent in the first guess rectangular area. If this condition is not
possible the event is discarded. For any given M, all acceptable ar-
eas for the first guess points (x', y") are assumed equiprobable. The
probability is 7| = Pr(x, y, z, A|R;, M;, C, = 1S) = #,where n;
is the number of the accepted areas for magnitude M;. Two possi-
ble alternative models are considered to set the described procedure.
One considers the rupture confined within the classical seismogenic
depths (here called ‘nucleation zone’), and the other allows rupture
propagation to the conditionally stable trench zone (Lay ez al. 2012;
here called ‘propagation zone’, see Appendix A.3.7 in the Sup-
porting Information for additional details). In our model, the larger
the magnitude, the more the slip propagation is allowed at shallow
depths. This roughly corresponds to the assumption that the rupture
energy controls the propagation within the decoupled trench zone.

At LEVEL IS-2, we here only consider uniform slip equal to
the mean slip value from scaling laws, with probability 1% = 1, for
both alternative models of LEVEL IS-1. More details are reported in
Appendix A.3.7 (Supporting Information). Additionally, we point
out that this model does not allow either for shallow slip amplifica-
tion (we only use uniform slip) or for ‘tsunami earthquakes’ with
slip confined only in the shallow zone (Polet & Kanamori 2009).
Specific models should be developed to account for this kind of
events, which is not an easy task, but likely a mandatory one in
an operational assessment, as tsunami impact is sensitive to the
details of the slip distribution particularly in the near-field of the
source.

3.1.2 STEP 2 and 3a: the linear propagation framework and hy,y
extrapolation

For this application, we model more than 6 x 10° scenarios, aris-
ing from STEP 1. Tsunami propagation from source to target
is then obtained by linear combination of pre-computed tsunami
scenarios. This is a common strategy to significantly reduce the
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number of numerical simulations needed to represent a very
large amount of input parameter combinations. We use a set of
about 53 000 Gaussian-shaped elementary tsunami sources cov-
ering the whole Mediterranean Sea, representing the initial sea-
level elevation (e.g. Miranda et al. 2014; Tsushima et al. 2014).
For each of them, we perform a numerical simulation. We use
a nonlinear shallow water multi-GPU code (HySEA, Gonzalez
Vida et al. 2015) over a 30 arc-sec bathymetric grid (SRTM30+,
http://topex.ucsd.edu/WWW _html/srtm30_plus.html) covering the
whole Mediterranean Sea. Our database contains, for each elemen-
tary source, the tsunami time histories (8 hr sampled every 30 s)
stored along the 50 m isobath (about 13 000 points at an average
distance of 2 km). The target points considered for our case study
are shown in Fig. 3(b) (yellow and red dots).

In order to simulate a given scenario in the ET, we model a fault
dislocation with Okada (1985). The Kajura (1963) filter is then used
for the sea-bottom/water-surface transfer of the dislocation to obtain
the static initial condition for sea level elevation. Then, we perform
a rapid estimation of the coefficients that approximate at best the
tsunami initial condition by linear superposition of the Gaussian
functions. The same coefficients are used to linearly combine the
corresponding pre-computed time histories at the 50 m isobath.
Eventually, maximum elevations are extracted and extrapolated at
the coast by use of the Green’s law. A detailed description of this
database and its performances is out of the scope of this paper, and
it will be reported in Molinari et al. (in preparation).

In this paper, the potential uncertainties on the propagation part
are completely neglected, so that a Dirac delta distribution centred
at the estimated %,y is assumed for the propagation term of SPTHA
(Pr(¥ > ¥|oy, x) in eq. (1) is the a step function); Random cou-
pling with tidal phases is totally neglected (e.g. Omira et al. 2015).
Furthermore, no epistemic alternatives are implemented, to consider
for example uncertainties in the bathymetric models, or implemen-
tations of dispersion and wave breaking in tsunami numerical mod-
els. This is done for purely explicative reasons, since this paper
is more focused in exploring uncertainty in the source parameters
space.

3.1.3 STEP 4: the ensemble model

The main results of SPTHA are the HCs at the target points, evalu-
ated assuming a Poisson distribution (eqs 2 and 4) with an exposure
time AT of 50 yr. By combining all the alternative formulations
at all the LEVELS of the ET, we obtain a total of 10 752 alter-
native formulations. Given that no alternatives are considered for
the propagation (STEPS 2-3), we have a total of 10 752 alternative
formulations for the SPTHA.

This number is very high, and then only a subset, a sample of
these alternatives, is considered to obtain the final ensemble model.
In particular, we first compute the rank of the alternatives by multi-
plying the weights relative to each branch of the AT. Then, N, = 100
alternative configurations are sampled out from the 10 752 alterna-
tives. This number is chosen deliberately small, in order to constrain
the computational effort and, at the same time, to enable a sufficient
quantification of the order of magnitude of the confidence inter-
val through low and high percentiles (16th and 84th percentiles,
in this application). The sampling is performed according to the
total weight of each model, so that high-weight models are more
likely to be sampled than low-weighted models. Applying eq. (2)
to the alternative models, we obtain N, HCs that represent the in-
put sample for the ensemble model of eq. (7). Since intermediate

models between the formulated alternatives are expected to ex-
ist, a monomial ensemble distribution is preferred. In particular,
we adopt a Beta distribution with the parameters set through the
Maximum Likelihood Estimation. This choice is quite common in
the hazard literature (e.g. Selva & Sandri 2013; Marzocchi et al.
2015), and it is considered sufficient for the explicative nature of this
application.

The obtained ensemble models finally quantify simultaneously
and consistently the uncertainties (both aleatory and epistemic) on
SPTHA.

3.2 Sensitivity tests

Two different kinds of sensitivity tests are here presented. We first
analyse the sensitivity of SPTHA results to some of the implemented
alternative formulations. Then, we analyse the sensitivity of SPTHA
by exploring how much the results are affected by the new combined
treatment of IS and BS that we propose, compared to more classical
approaches where only IS or BS (including the subduction zones,
like in PSHA) were considered.

The sensitivity to alternative implementations is performed con-
sidering the N, models sampled as described in Section 3.1.3. We
consider the total mean annual rate curves A™ of eq. (4) at 12 tar-
get points along the coastline (Fig. 3b). The results are reported in
Fig. 4. We test the sensitivity of SPTHA to (i) two different ap-
proaches for the estimation of the b-value at LEVEL 1 of the ET
(see Appendix A.3.1, Supporting Information); (ii) two different
approaches allowing or not coseismic slip in the ‘propagation zone’
for subductions (see Appendix A.3.7, Supporting Information). We
consider this to be likely two of the most important factors in con-
trolling the SPTHA, and then we expect a measurable impact on
our results; hence, they are used here primarily for checking the
consistency of the proposed approach. A more systematic analysis
for all the involved parameters (e.g. Knighton & Bastidas 2015)
should be however performed for an operational assessment.

In Fig. 4, the colours of the sampled models are assigned accord-
ing to the implemented alternative models for the b-value estimation
at LEVEL 1 of the ET, and for slip propagation at LEVEL IS-1. As
probably expected, a clear separation is observed due to the choice
on the b-value; that is, the curves for b = 1 (red and blue curves)
feature generally higher values than for the case in which b is esti-
mated from seismicity data. The opposite is observed at some sites
for intermediate annual rates (and ARPs), where the black curve
(‘propagation’ allowed at shallow depths in the subduction zones,
though with b-value estimated from data) crosses through and over-
comes the curves for b = 1, for annual rates between ~10~4—107°.
This happens with different details for most of the sites ranging from
Bova Marina to Leuca (see also Fig. 3), indicating that the sensitiv-
ity to the alternative models for the subduction zone is enhanced in
the near-field of the Calabrian Arc.

The second group of sensitivity tests regards the importance
of the proposed approach for combining IS and BS seismicity in
the model for SPTHA. Compared to the more classical procedure
where only subduction events are considered (e.g. Gonzélez et al.
2009), or to cases in which events are considered equiprobable in a
volume (Serensen et al. 2012), one of the most innovative part of the
proposed methodology is the separation between IS and BS to allow
a more focused treatment of the available information. A coherent
test has to be developed to evaluate the impact of this procedure on
the hazard results. With this goal, we consider the best guess models
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—b-value set to 1 - IS propagation allowed
——b-value set to 1 - IS propagation not allowed
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Figure 4. Sensitivity of the annual rates of exceedance to model implementation at LEVEL 1 (b-value) and LEVEL IS-1 (extent of the shallow rupture in
subduction zones) of the ET for the selected points (Fig. 3) along the Italian coastline.

(highest weights) for all LEVELS but for LEVEL 2, obtaining the (2) IS-only: a buffer = oo is assumed, so that all events are

following configurations: modelled as IS (in the regions where a subduction interface is not
present, no seismicity is modelled);

(1) BS-only: a buffer = 0 is assumed, so that all events are (3) IS+BS: the 12 alternatives of LEVEL 2 are considered to

modelled as BS; combine IS and BS.
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In this way, we end up with 14 models for comparing the result
of BS-only (model 1), IS-only (model 2) and IS+BS (models 3—14)
within a common and homogeneous framework.

In Fig. 5, we report the results of this comparison for the total
mean annual rates of exceedance 1™ at the same 12 target points of
Fig. 4. The SPTHA of IS+BS combinations results very similar to
each-other, demonstrating that the epistemic uncertainty modelled
through the 12 alternatives considered in LEVEL 2 has a relatively
small impact on the SPTHA results.

The results of BS-only seem to overestimate the mean annual
rates for all the intensity levels, especially for the highest hazard
intensities. We report also the results from the N; models of Fig. 4
(light grey), even if not all those models are completely coherent
with BS-only and IS-only cases, which consider only the most likely
alternative for all LEVELS but LEVEL 2. The curves of BS-only
overcome the N; models at all the sites but for the lowest intensity
levels. Thus, the excessively large aleatory variability modelled in
the BS-only has the effect of maximizing the potential tsunami
impact at any target site. This effect may be due to the existence
of potential earthquakes with high magnitudes for any possible
faulting mechanism in the entire regions. For example, the BS-only
considers an earthquake with magnitude 9 with a fault centred in
the corner of the region at depth W/2, for each possible faulting
mechanism, even if there is no fault that may cause such an event.
On the opposite, in all the other models magnitude 9 events are
forced to be on the subduction. Consequently, in the BS-only model,
all events maximizing the tsunami impact at any target site exist,
even those that are not physically possible. As a result, a general
overestimation of the hazard at all ARPs occurs in BS-only cases.

The SPTHA of IS+BS is instead in general higher than that of
IS-only, at least for intermediate and long ARPs. The effect is less
pronounced for sites that are closer to the Calabrian Arc subduction
zone (Bova Marina to Leuca), where the curves partially overlap.
This shows that, at least in complex tectonic environments, crustal
seismicity need to be taken into account. It is possible that for high
intensities (i.e. for long ARPs) these differences would be to some
extent compensated by including heterogeneous slip distributions
and shallow slip amplification in subduction zones, which we did
not consider in our case study.

In summary, the comparison of IS-only, BS-only and IS+BS
shows that: (i) the epistemic uncertainty introduced for separating
the IS and BS contributions is significantly smaller than the uncer-
tainty introduced when only BS is considered; (ii) the combination
of IS and BS is always important (particularly if the target site is not
directly in front of a subduction zone); (iii) given the directivity of
the tsunami propagation and its sensitivity to the source geometry,
the excessive extension of the aleatory variability may have a very
significant impact on the hazard results, as in the case of the BS-only
model, potentially beyond the epistemic limits.

3.3 SPTHA results: quantification of the impact on
hazard of aleatory and epistemic uncertainty on sources

In Fig. 6, we report the main results of the case study. The ensemble
model is shown through its statistics, namely the mean and me-
dian HCs, and the 16th—84th percentiles confidence intervals. For
comparison, also the N, input models in the previous section are
reported in light grey.

The visual analysis of these curves indicates that in most of the
cases the ensemble of alternatives is reasonably represented by the
statistical description of the ensemble model. However, in some

cases the highest hazard curves fall outside the confidence interval
identified by the 16th and the 84th percentiles. These curves are
likely related to models with a relatively low subjective credibil-
ity (weight). Hence, their impact on the ensemble distribution is
relatively small.

The spatial distribution of the HCs can be explored also consid-
ering either Hazard Maps, which report the intensity corresponding
to the selected probability thresholds, or Probability Maps, which
report the exceedance probability for the selected intensity thresh-
olds. These maps are obtained by cutting the HCs through either
horizontal thresholds (for Hazard Maps) or vertical thresholds (for
Probability Maps). The results are reported at different statistics
for the epistemic variability: the mean and median values (to rep-
resent the central value of the aleatory uncertainty) and the 16-84
percentiles confidence intervals (to represent the epistemic uncer-
tainty).

The resulting Hazard Maps for the threshold corresponding to
1 and 10 per cent in 50 yr (corresponding to 475 yr and 4975 yr
of ARP) and the Probability Maps for the thresholds equal to 1
and 5 m of A, are reported in Figs 7 and 8, respectively. By
comparing for example the hazard maps, a correlation between the
hazard intensity at the different ARP and the relative position of the
target sites respect to the two subduction interfaces can be inferred
to be a general stable trend along the target coasts. Indeed, the
biggest intensities are observed along the most Southern coast of
the Calabrian peninsula and the Eastern coast of Sicily, and on the
Southernmost tip of Apulia. This is likely the result of a complex
combination of the relative position of the targets and the sources,
and of the tsunami propagation. Possibly, some wave focussing
occurs at several sites (e.g. Bova Marina, Crotone, Leuca, for which
the HCs of Fig. 6 are also more sustained), which was already
observed in previous studies (e.g. Tiberti et al. 2008; Basili et al.
2013).

These features, and in particular the relative importance of the
different source regions on the SPTHA results can be analysed
through the hazard disaggregation (Bazzurro & Cornell 1999) as:

G
Z,’ }WTOI (\IJ >, X)

In Fig. 9, we report the results for ¥ = 1 m, where we split the
contribution of the sources in three groups: contributions from the
tectonic regions including the Hellenic Arc (regions 7, 29 and 35);
those including the Calabrian Arc (regions 12 and 26); and those
from all the other source regions. We applied also here the concept
of ensemble modelling to the probability values obtained through
eq. (11), thus quantifying also epistemic uncertainty through its
statistics. In Appendix A (Supporting Information), we report also
the corresponding figures (Supporting Information Figs A10 and
A11) for two further thresholds of W =3 mand ¥ = 5 m.

The results show that the Hellenic and Calabrian Arcs regions (the
ones containing also the subduction interfaces) tend to dominate the
hazard in most of the selected target points, in some cases in combi-
nation with crustal sources, particularly for relatively short ARPs;
the situation becomes more complex by considering intermediate
or long ARPs. However, in all target points, and in particular in the
most Eastern sites (from Sibari to Brindisi), it is possible to observe
the non-negligible contribution of several purely crustal regions.
A large variability on the results of disaggregation is expected if
different thresholds W are selected. For example, the relative im-
portance of purely crustal regions increases with higher thresholds,
as shown in Appendix A (Supporting Information). It can be noted
indeed that the general influence of the regions in the near-field

Pr(Ri|W = o) = (1)
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Figure 5. Sensitivity of total mean annual rates of exceedance to the different approaches used in SPTHA. In our application, considering only subduction
zones (IS) would lead to hazard underestimation, while treating all sources as background (BS), that is, letting them occur everywhere in the seismogenic
volume as in PSHA, leads to an overestimation. For comparison, all the models shown in Fig. 4 are also reported in the background (light grey).

9T0Z ‘6 AN U0 ADN| T /Blo'seuinolpioxo1B//:dny wouy pspeojumod


http://gji.oxfordjournals.org/

1794  J Selva et al.

Siracusa

Catania Y Taormina

T

-
=1
&
LN —
RS T S SF T Y 14: M R R 115 A Rl

\ Brindisi

10 15 0 5 10

=== Ensemble mean
====Ensemble median

----- Ensemble 16-84th percentiles
— Input models of the ensemble

Figure 6. Mean, median, 16th and 84th percentile hazard curves (in red) from ensemble modelling, showing the exceedance probability in 50 yr as a function
of hmax. The grey curves in the background are the hazard curves obtained from the individual models sampled from the ensemble.

(with only BS, reported in black) tends to increase, as the intensity bars in Supporting Information Figs A10 and A11. Note also that
level increases. At the same time, as the number of sources that in several cases, the mean values fall outside the error bars, indi-
may cause larger tsunamis diminishes, the impact of epistemic un- cating distributions highly asymmetric with fat tails towards large

certainty on their rates tends to increase, resulting in larger error values.
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Figure 7. Hazard maps for 10 per cent in 50 yr (left column) and 1 per cent in 50 yr (right column) at the different statistics of Fig. 6 of the epistemic

uncertainty.

Another kind of disaggregation is performed by grouping the
sources per-cell, instead of per-region as above. An equation sim-
ilar to eq. (11) is then used, and we obtain the probability that if a
SPTHA threshold is exceeded at a given site, this is due to a specific

source cell, allowing for a visual analysis of the regional distribu-
tion of the potential tsunamigenic sources relevant for a specific
site and tsunami intensity, and for a classification of their relative
importance. Note that, in each cell, both the contributions of BS
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Figure 8. Probability maps for 1 m (left column) and 5 m (right column) at the different statistics of Fig. 6 of the epistemic uncertainty.

and IS are considered, by adding the contribution in each cell of
IS scenarios with centres inside each cell. The results are shown in
Fig. 10 for ¥ = 1 m. In Appendix A (Supporting Information), we
report also the corresponding figures (Supporting Information Figs
A12 and A13) for two further thresholds of ¥ = 3mand ¥ = 5 m.

For simplicity, in all these maps only the means of the ensemble
models are plotted. Again, for each site, the analysis of different
intensity thresholds shows that in some cases the relative impor-
tance of near-field and more distant sources, and of crustal and
subduction sources can be different, and that bathymetric features
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Figure 10. Disaggregation per cell for intensity W > 1 m; this map is a spatial distribution of the causative source probability for a tsunami at the site which
exceeds the selected threshold. The corresponding figures for W > 3 and 5 m are reported in the Supporting Information (Figs A12, A13). Red crosses indicate

the location of the target in each panel.

controlling tsunami propagation contribute significantly in shaping
the probability patterns. It can be also noted that the cells causing
such large intensities tend to diminish in number, and to concen-
trate in the near-field with respect to the targets. In addition, the
propagation features are even more marked for the highest inten-
sities (in Appendix A, Supporting Information), since the number
of influencing cells diminishes, and the propagation patterns of the
remaining sources emerges more clearly.

The impact of the epistemic uncertainty is important also in the
definition of either intensity or probability values of interest at single
locations. In Fig. 11, we report the explicit quantification of the
computed uncertainty by defining the intensity corresponding to an
exceedance probability value of 10 per cent in 50 yr (475 ARP) and
by defining the exceedance probability corresponding to an intensity
value of 5 m for the selected points along the Italian coastline.
The results show that the selection of any single value may be
misleading, since it is strongly affected by the epistemic uncertainty
in the hazard assessment. On the contrary, these distributions are
more informative, and also enable for quantitatively testing the
hazard results against the observed frequency of tsunamis at specific
sites, whenever sufficiently complete catalogues exist (Marzocchi

& Jordan 2014). For example, we can count the number of time
windows in which at least one exceedance of 5 m has been observed
at a given site, and compare the observed frequency of exceedance
with the distribution reported in Fig. 11 for the same site. Performing
a quantitative statistical test, we can evaluate whether both aleatory
variability and epistemic uncertainty have been well captured into
the actual implementation of SPTHA.

4 FINAL REMARKS

In this paper we present a general procedure for the SPTHA, orga-
nized in four steps:

(1) development of the source model by an ET with a hierar-
chic discretization of the (source) parameters space, developing
also alternative implementations of the ET and of its probabilistic
formulation to explore the epistemic uncertainty;

(2) computation of the tsunami wave propagation for all potential
sources by a linear model adopting a kernel of Gaussians, evaluating
hmax at the 50 m isobaths;

(3) (optional) quantification of the tsunami impact at the shore-
line or inland, either by run-up through amplification factors at
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Figure 11. Uncertainty on the definition of reference intensity and probability values obtained from horizontal (left panel) and vertical (right panel) cuts of
the ensemble hazard curves; on the left, the ensemble distribution of the intensity values for an exceedance probability of 10 per cent in 50 yr; on the right,
the ensemble distribution of the exceedance probability for an intensity of 5 m. Bars indicate discretized probability density functions, while dashed lines the
cumulative distributions functions. To increase readability, the mode of histograms is normalized to 1.

coastal sites, or by explicit inundation evaluation for a subset of
sources selected ex post;

(4) integration of the alternative realizations of STEPs 1-3
through ensemble modelling, in order to provide unbiased assess-
ment of both aleatory and epistemic uncertainty.

The proposed ET allows hierarchic discretization of the source
space. Each LEVEL considers a discrete number of values that
jointly define the tsunamigenic seismic sources. The potentially
large aleatory variability in the parameter space is efficiently ac-
counted for through a series of conditional dPDF. The specific
structure of the ET allows for quantifying all inherent uncertain-
ties and obtaining accurate and as precise as possible results. More
specifically, the proposed ET allows to:

(1) fully control the energy release in each region;

(2) separate the subduction interface (or in principle any well
constrained fault system) from the background seismicity (here
crustal sources) by considering two seismicity classes (IS and BS);

(3) specifically use a large set of different source of information
in each seismic region, spanning from the seismicity and the focal
mechanism catalogues, the analytical and the empirical laws and
models, to the dataset of known faults;

(4) implement a potentially large number of alternatives at all
steps of the hazard analysis for the quantification of the epistemic
uncertainties.

It is also important to stress that when known faults are present
within the cells that are treated as background, this information is
used and the probability for the earthquake mechanism occurrence
in the cell peaks towards values imposed by the presence of the
fault.

Ensemble modelling is adopted to quantify all the uncertainties
that arise from different and alternative formulations of the SPTHA,
with the only requirement that the set of alternative models repre-
sents an unbiased sample of the epistemic uncertainty. The result of
the assessment is the ensemble distribution on the HCs. The ensem-
ble distribution represents simultaneously all the uncertainties in the
hazard (both aleatory and epistemic), and may eventually be summa-
rized through central tendency estimators (e.g. the mean, to repre-
sent the best estimated aleatory variability) and confidence intervals
(e.g. 16th—84th percentiles, to represent the overall epistemic un-
certainty). In addition, the ensemble allows one to propagating such
uncertainty to all the secondary estimates, such as hazard or proba-
bility maps for selected intensity or probability of interest, or disag-
gregation analyses, and to quantitatively test the results against past
data.

Noteworthy, this procedure is in principle applicable more in
general for PTHA, not only for seismic sources. Of course, the
treatment of non-seismic sources in a probabilistic framework, for
example the landslides would require a specific implementation at
several steps. The proposed method also provides a framework for
linking region-wide to site-specific SPTHA.
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The presented SPTHA methodology is here applied in the Ionian
Sea, a relatively small area in the central-eastern Mediterranean Sea,
characterized by two subduction zones and crustal faults in a diverse
tectonic setting. We used a great deal of seismic and tectonic data
and various earthquake rupture models. Through this application,
it is shown that our approach provides an efficient way to fully
explore both aleatory and epistemic uncertainty: we explore through
the ET more than 6 x 10° alternative tsunami scenarios, and we
combine them through more than 1 x 10* alternative probabilistic
implementations. To derive this set of alternative implementations,
we consider alternative formulations of the ET with alternative
assessments of the dPDFs, and alternative configurations of the
subduction interfaces and their related parameters.

The results of the application consist of (i) two sensitivity analyses
(on some alternative SPTHA formulations, and on the separation
between BS and IS); (i) SPTHA results along the southern Italian
coastline for an exposure time of 50 yr, along with disaggregation
analyses, and relative uncertainty. These results provide interesting
and general insights as summarized below:

(1) Constraining the aleatory uncertainty in the IS is of primary
importance. The separation of IS and BS allows for a full use of all
the available information on main structures (subduction interface
geometry and kinematics, in our application), without neglecting
the potential contribution of less known faults. Distinguishing be-
tween IS and BS allows for a full control of the aleatory variability
on sources. Not doing so may lead to significant bias on the haz-
ard. On the one hand, considering only IS may underestimate the
hazard, especially for target sites not directly located in front of the
subduction interface. On the other hand, considering only BS may
lead to a significant overestimation of the hazard.

(2) An important mixture exists of both IS and BS at all target
sites. In particular, in our case study, a significant contribution of BS
to the total hazard is observed for both small and large intensities,
especially in the sites not directly sitting in front of subduction
interfaces. Region disaggregation shows that the main contribution
to the hazard at all target sites comes from the Hellenic Arc, from
the Calabrian Arc, and from several other purely crustal regions
in the mid-near field. In the most Eastern sites the impact of such
purely crustal regions becomes comparable (or even larger, e.g. in
Brindisi) with the impact of subduction regions. The relative impact
of purely crustal regions seems to increase, as the hazard intensity
of interest increases.

(3) The full propagation of all the uncertainties allows an explicit
estimation of the uncertainty on all secondary results of hazard
curves, such as hazard/probability maps, reference intensities, etc.
In the same way, all sources of uncertainty may be tracked back
based on their impact on the results. Here we provide several exam-
ples of sensitivity tests, but based on the proposed models a large
number of potential tests are thinkable for future analyses.

(4) Cell disaggregation helps in decoding the complexity of this
assessment, in which millions of tsunami scenarios and thousands of
alternative formulations are considered. In particular, cell disaggre-
gation allows defining in a robust manner the source areas of interest
for any given target and any given reference intensity, accounting
for both efficiency in the tsunami generation and propagation, and
likelihood of events in each area.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online ver-
sion of this paper:

APPENDIX A: Details in SPTHA assessments

A.1 Basic input data.

A.2 Tectonic framework.

A.3 Probabilistic assessments for the Event Tree in each region.
A.4 Disaggregation results at higher intensity levels.

Table Al. Magnitude of completeness in the EMEC regions ex-
tracted for the tectonic regions of Fig. 1 (main text).

Table A2. Regionalization nomenclature for the area in Fig. 3 (main
text).

Table A3. Number of depth intervals used for all cells for BS, with
the exception of the case BS-only.

Table A4. Number of depth intervals and values used for cells
belonging to regions in subduction zones for BS-only assessment.
Figure Al. Cumulative frequency—magnitude curves of each tec-
tonic region using the EMEC catalogue. The completeness magni-
tude is 4.5 for all regions, while the relative completeness years are
indicated for each region in the legend.

Figure A2. Representation (mesh of triangular elements) of the
two subduction zones of the Calabrian and Hellenic Arcs. Red
dots are the geometrical centres of the earthquake ruptures used
to spatially explore the slab interface. The blue and red poly-
gons represent the boundaries of the nucleation and propaga-
tion zones, respectively. The colour-shaded polygons are the var-
ious crustal regions (BS) overlapping the subduction interfaces
and which are considered in various combinations with the rel-
evant subduction for the calculation of earthquake occurrence
rates.

Figure A3. The grid adopted at LEVELS B1-B3: it is composed
by non-conformal equal-area cells of 25 x 25 km? (see the text, for
more details).

Figure A4. Alternative Tree for LEVEL 1. To simplify the graphics,
we reported all the branches only in few cases, while the sub-tree
structure is substituted with ‘clone’ in all the other cases.

Figure A5. Resulting cumulative frequency size distributions, for
the 48 alternative models in two randomly selected macro-regions
(the macro-region of the Calabrian arc, containing regions #12 and
#26, and region #14). The distributions are compared with the es-
timation data (light blue, completeness level of 4.5), the data from
the same catalogue with a completeness level of 5.5 (dark blue), and
with the mean model (red).

Figure A6. Alternative Tree for LEVEL 2. To simplify the
graphics, we reported all the branches only in few cases, while
the subtree structure is substituted with ‘clone’ in all the other
cases.

Figure A7. Resulting frequency of IS events with respect to BS
evens, for the 12 alternative models. The functions are compared
with the data for the three depth buffers (blue), when data are
available, and with the mean model (red). Note that in many cases
(for the largest magnitudes) less than 5 events are present, so the
plotted points are not significant.

Figure A8. Spatial distribution for the whole region, multiplied by
the mean model for mean annual rates of exceedance of M = 4.5,
for two alternative models: a uniform distribution in each region
(left panel) and smoothed seismicity (right panel), both computed
from a depth buffer of 5 km at LEVEL 2. Note that, if less than 50
events are found in the area, a uniform distribution is adopted also
in the smoothed seismicity branch.

Figure A9. Mean values of the posterior distribution for the region
#7. The results are reported for all the combinations of depth buffer
for LEVEL 2 (excluding oo) and the alternatives at LEVEL BS-3
(4 x 2 = 8 rows, from up to down, we consider buffers of 0, 5 km,
10 km and 15 km with catalogue ALICMT first, then for Emma).
In the different columns, we group the results for the different rake
intervals (from left to right, centred in —90, 0, 90, 180).

Figure A10. Region disaggregation results for an intensity threshold
of 3 m. In the regions in which IS is present, both IS and BS
contributions are considered.

Figure A11. Region disaggregation results for an intensity threshold
of 5 m. In the regions in which IS is present, both IS and BS
contributions are considered.
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Figure A12. Cell disaggregation results for an intensity threshold
of 3 m. In each cell, both IS and BS events with fault centres in
each cell are considered. The red crosses report the locations of the
target considered in each panel.

Figure A13. Cell disaggregation results for an intensity threshold
of 5 m. In each cell, both IS and BS events with fault centres in
each cell are considered. The red crosses report the locations of the
target considered in each panel.
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